Nucleophilic Displacement with Heterocycles as Leaving Groups. Part 16.¹ Reactions of Secondary Alkyl Primary Amines with 5,6,8,9-Tetrahydro-7phenyldibenzo[*c*,*h*]xanthylium Trifluoromethanesulphonate to give Intermediates Solvolysing without Rearrangement

Alan R. Katritzky,* Maria L. Lopez-Rodriguez, James G. Keay, and Roy W. King Department of Chemistry, University of Florida, Gainesville, Florida 32611, U.S.A.

Representative secondary alkyl primary amines $R^1R^2CHNH_2$ react with the title pyrylium cation in acetic acid, alcohols, phenols, and *NV*-dimethylaniline acting as nucleophilic solvents to give *O*- and *C*-(secondary alkyl) products. Absence of carbenium ion rearrangements is consistent with reaction *via* intimate ion-molecule pairs formed rapidly from the corresponding pyridinium cations.

This series of papers has investigated the kinetics and mechanism of the nucleophilic development of N-primary alkyl and N-secondary alkyl groups from pyridinium compounds. As recently summarized,² cogent evidence has been obtained for discrete mechanisms: classical $S_N 2$, classical $S_N 1$ via free carbenium ions, and both first- and second-order reactions of intimate ion-molecule pairs. The identification of reaction products, and particularly the presence or absence of rearrangement, has played an important part in the interpretation.

N-n-Octyl- and *N*-n-dodecyl-acridinium ions are solvolysed ³ in phenol at 140 °C to give a mixture of the n-alkyl phenyl ethers and all the isomeric secondary straight-chain o- and palkylphenols, probably via carbenium ion intermediates. Studies ¹ of the solvolysis reactions of 1-(1-methylbutyl)- and 1-(1-ethylpropyl)-5,6-dihydro-2,4-diphenylbenzo[h]quinolinium salts have revealed that these reactions proceed via free carbenium ions with rearrangement in trifluoroacetic acid and 1,1,1,3,3,3-hexafluoropropan-2-ol, yet in acetic acid solvolysis occurred without any rearrangement.

We recently reported reactions of 2,4,6-triphenylpyrylium salts with the secondary alkyl primary amines 1-phenylethylamine and (diphenylmethyl)amine. Spontaneous further reaction of the intermediate pyridinium cations led to the roomtemperature conversion of these amines into ethers, esters, and C-alkylated products.⁴ Chiral 1-phenylethylamine (in acetic acid) gave 1-phenylethyl acetate with complete inversion of configuration,⁵ indicating solvolysis *via* a tight ion-molecule pair.

We now report that aliphatic secondary alkyl primary amines react at ambient temperature with the xanthylium salt (1) to give solvolysis products of cations (2) without rearrangement. Use of 5,6,8,9-tetrahydro-8-phenyldibenzo[c,h]acridine (3) as a leaving group is known⁶ to promote N-C bond heterolysis by steric compression and gives rates enhanced over the 2,4,6triphenylpyridine analogues.⁶

The xanthylium salt (1) was treated at 25 °C with a variety of secondary alkylamines in nucleophilic solvents (Scheme 1) and the products analysed by ¹H and ¹³C n.m.r. spectroscopy and gas chromatography-mass spectrometry. ¹³C Peak assignments were made by considerations of chemical shift and off-resonance decoupling.

With acetic acid as nucleophile, the corresponding secondary alkyl acetates (see Table 1) were formed without any rearrangement. Thus, gas chromatography-mass spectrometry of the solvolysis reaction of 1-methylhexylamine with (1) in acetic acid showed only the presence of 1-methylhexyl acetate. Similar results were obtained with cycloheptyl-, 1-methylbutyl-,

Scheme 1. $R^1R^2CH = cycloheptyl, Me[CH_2]_4CHMe, Pr^CHMe, or Et_2CH; solvent = AcOH, MeOH, EtOH, PhOH, p-MeC_6H_4OH, or PhNMe_2$

and 1-ethylpropyl-, giving the corresponding cycloheptyl, 1methylbutyl, and 1-ethylpropyl acetates, respectively. Products were identified by their ¹H and ¹³C n.m.r. spectra (Tables 2 and 3).

Use of primary alcohols as reaction solvent at 25 °C led to the isolation in moderate yield (Table 1) of 1-methylbutyl methyl and ethyl ethers from the reaction of 1-methylbutylamine in methanol and ethanol, and, similarly, 1-ethylpropyl methyl and ethyl ethers from 1-ethylpropylamine. Structures were confirmed by ¹H and ¹³C n.m.r. spectroscopy (Tables 2 and 3).

Use of phenol and *p*-cresol gave mixtures of O- and Calkylated compounds. Gas chromatography-mass spectrometry

Solvent	Amine R in RNH ₂	Product	Yield	B.p., $t/^{\circ}C(p/mmHg)$	Lit. b.p., $t/^{\circ}C$ (p/mmHg)
AcOH	Cycloheptyl	Cyclohentyl acetate	35	96-97 (33)	76-78 (11)
AcOH	Me[CH ₂] ₄ CHMe	Me[CH ₂] ₄ CHMeOAc	50	170172	171—173 ^b
					$(1/)^{c}$ 60.060.5 (12) ^d
AcOH	Pr ⁿ CHMe	Pr ⁿ CHMeOAc	60	134-135	131.8—132 (746) ^e
AcOH	Et ₂ CH	Et ₂ CHOAc	62	133.5—134	133.8 ^d
MeOH	Pr ⁿ CHMe	Pr ⁿ CHMeOMe	30	9091	91—92 ^f
MeOH	Et ₂ CH	Et ₂ CHOMe	31	8889	g
EtOH	Pr ⁿ CHMe	Pr [®] CHMeOEt	35	105-106	104*
EtOH	Et ₂ CH	Et ₂ CHOEt	37	104-105	106 ⁱ

Table 1. Solvent trapping of carbenium ions formed from amines and 5,6,8,9-tetrahydro-7-phenyldibenzo[c,h]xanthylium trifluoromethane-sulphonate (1)

^a M. Kobelt, P. Barman, V. Prelog, and L. Ruzicka, Helv. Chim. Acta, 1949, **32**, 256. ^b E. E. Royals, J. Org. Chem., 1958, **23**, 1822. ^c R. H. Pickard and J. Kenyon, J. Chem. Soc., 1914, **105**, 852. ^d J. C. Schear, E. C. Kooyman, and F. L. J. Sixma, Recl. Trav. Chim. Pays-Bas, 1963, **82**, 1123. ^e H. E. French and G. G. Wrightsman, J. Am. Chem. Soc., 1938, **60**, 50. ^f F. Nerdel, E. Henkel, R. Kayser, and G. Kannelbley, J. Prakt. Chem., 1956, [4] **3**, 153. ^g E. Muller, M. Bauer, and W. Rundel, Z. Naturforsch., Teil B., 1959, **14**, 209. ^h C. Blomberg and A. D. Vreugdenhil, Recl. Trav. Chim. Pays-Bas, 1962, **81**, 238. ⁱ R. Nakao, T. Fukumoto, and J. Tsurugi, J. Org. Chem., 1972, **37**, 4349.

Table 2. ¹H N.m.r. data (δ values^a) for solvolysis products in acetic acid, methanol, and ethanol

Structure	Me	CH ₂ (m)	>CH- (m)	OCH (3 H, t)	₂ CH ₃ (2 H, q)	CH ₃ CO ₂ or CH ₃ O (s)
Cycloheptyl acetate		1.42—1.63 (8 H) 1.73 (4 H)	4.9			2.0
Me[CH ₂]₄CHMeOAc	0.90 ^b , 1.10 ^c	1.40	5.0			2.1
Pr ⁿ CHMeOAc	0.90 ^b	1.50	5.0			2.1
Et ₂ CHOAc	0.90 ^d	1.60 °	4.8 ^ƒ			2.1
PrⁿCHMeOMe	0.90 ^b	1.40	3.1			3.3
Et ₂ CHOMe	0.90 ⁴	1.50 ^e	3.1 ^f			3.4
Pr ⁿ CHMeOEt	0.90 ^b	1.45	3.1	1.2	3.5	
Et ₂ CHOEt	0.90 ^d	1.50 °	3.0 ^f	1.2	3.5	
^a In CDCl ₃ . ^b Multiplet. ^c Doublet. ^d Triplet.	^e Quartet. ^f Qu	intet.				

Table 3. ¹³ C	C Chemical shifts ^a	(p.p.m.) for solvoly:	s products in acetic	acid, methanol	, and ethanol
---------------------------------	--------------------------------	-----------------------	----------------------	----------------	---------------

Structure	C-1	C-2	C-3	C-4	C-5	Ester or ether Me	Ester CO or ether CH ₂
Me[CH ₂] ₄ CHMeOAc ^b	19.6	71.0	35.6	24.8	31.4	20.5	170.5
Pr ⁿ CHMeOAc	20.9	71.2	37.7	18.3	13.5	20.4	170.5
Et ₂ CHOAc	9.0	26.0	76.0			20.4	170.1
Pr ⁿ CHMeOMe	20.1	77.2	39.7	19.6	15.1	56.3	
Et ₂ CHOMe	9.2	25.2	83.1			56.1	
Pr [®] CHMeOEt	19.9	76.5	39.7	19.5	14.9	15.1	63.7
Et ₂ CHOEt	9.4	25.9	81.6			15.3	63.8

of the reaction of (1) with 1-ethylbutylamine in phenol showed three peaks. Peak areas (Table 4) were determined from the total ion content for all ions above m/z 32. The mass spectrum of each component exhibited a molecular ion of m/z 164. The fragmentation patterns were distinctive and characteristic, proving that the three components are 1-methylbutyl phenyl ether (A), p-(1-methylbutyl)phenol (B), and o-(1-methylbutyl)phenol (C) (Table 4).

The ether (A) (O-alkylated product) exhibited a base peak at m/z 94, produced by the loss of pentene accompanied by hydrogen migration to the ring (a characteristic fragmentation of an aromatic alkyl ether⁷). By contrast, the C-alkylated

compounds (B) and (C) each displayed the base peak at m/z 121 corresponding to $M^+ - C_3H_7$, a characteristic fragmentation for a C-(α -propylalkyl)phenol.⁷ The meta-orientation for the benzene ring substitution was eliminated for both the C-alkyl products as m-(n-alkyl)phenols show an intense peak at m/z 108 for loss of alkene to give C_7H_7O and only a very weak signal at m/z 107, in contrast to the ortho- and para-isomers.⁸ We find no such alkene loss. The ortho- and para-(1-methylbutyl)phenols were clearly distinguished; loss of H_2O to give a distinct m/z 146 $(M^+ - 18)$ occurs only in ortho-isomers.⁸

Gas chromatographic-mass spectrometric analysis of the reaction products from 1-ethylpropylamine with (1) in phenol

Table 4. Mass spectral peak intensities for g.l.c. peaks (A), (B), and (C) for the solvolysis products derived from 1-methylbutyl- and 1-ethylpropylamine with (1) in phenol

	C	Engement	1-Met	1-Methylbutylamine			1-Ethylpropylamine		
m/z of peak	fragment	loss	(A)	(B)	(C)	(A)	(B)	(C)	
164	М		3	13	8	3	17	13	
146	$C_{11}H_{14}$	H ₂ O			2			4	
135	C ₀ H ₁₁ O	C ₂ H ₅				1	53	100	
121	C ₈ H ₉ O	C_3H_7	1	100	100				
107	$C_7 H_7 O$			14	11		100	78	
94	C ₆ H ₆ O	C5H10	100			100			
91	$C_{7}H_{7}$			8	6		10	7	
77	C ₆ H ₅	C ₄ H ₁₁ O	6	13	9	6	8	9	
Retention time/s	0 5	5 11	548	729	782	540	700	766	
Substitution patter	n		0	р	0	0	р	0	
% Relative yield			54	35	11	50	30	20	

Table 5. Mass spectral peak intensities for g.l.c. peaks (A), (B), and (C) for the solvolysis products derived from 1-methylbutyl- and 1-ethylpropylamine with (1) in *p*-cresol

	Commentine	F	1-Met	hylbutyl	amine	1-Eth	ylpropyl	amine
m/z of peak	fragment	loss	(A)	(B)	(C)	(A)	(B)	(C)
178	М		6	15	6	4	27	36
149	$C_{10}H_{13}O$	C ₂ H ₅				1	82	100
135	$C_9H_{11}O$	C_3H_7	1	100	24			
121	C ₈ H ₉ O	- /		12	6		100	98
108	C ₇ H ₈ O	C5H10	100	1	100	100	3	
107	C ₇ H ₇ O	$C_{5}H_{11}$	19	3	20	19	5	
91	C_7H_7		3	8	6	3	11	
77	C ₆ H ₅	C ₆ H ₁₃ O	3	4	8	3	8	
Retention time/s			601	741	801	593	713	799
Substitution patter	m		0	0	m	0	0	m
% Relative yield			57	41	2	55	44	1

Table 6. Mass spectral peak intensities for g.l.c. peaks (A) and (B) for the solvolysis products derived from 1-methylbutyl- and 1-ethylpropyl-amine with (1) in NN-dimethylaniline

			1-Methylb	outylamine	1-Ethylpro	opylamine
	Corresponding	Fragment		<u> </u>		~
m/z of peak	fragment	loss	(A)	(B)	(A)	(B)
191	М		62	14	48	13
176	$C_{12}H_{18}N$	CH3	13	4	36	
162	$C_{11}H_{16}N$	C ₂ H ₅	97		100	100
148	$C_{10}H_{14}N$	C_3H_7	100	100		
147	$C_{11}H_{15}$	C_2H_6N	11	11	23	13
Retention tim	e/s		518	815	500	770
Substitution p	attern		0	р	0	р
% Relative yi	eld		51	49	45	55

gave similar results. Three peaks in the ratio 50:30:20 were assigned to 1-ethylpropyl phenyl ether (A), p-1-ethylpropylphenol (B), and o-1-ethylpropylphenol (C). The ether (A) exhibited characteristic fragmentations at m/z 135 and 94 corresponding to $M^+ - C_2H_5$ and $M^+ - C_5H_{10}$ while the phenols (B) and (C) showed ions at m/z 146 ($M^+ - H_2O$, orthoisomer only), 135 ($M^+ - C_2H_5$), and 107 ($M^+ - C_4H_9$) (see Table 4).

The gas chromatographic-mass spectrometric study of the reaction of 1-methylbutylamine with the xanthylium ion (1) in *p*-cresol again revealed the presence of three components in the ratio 57:41:2 (Table 5), each with molecular ions of m/z 178. Component (A) showed a base peak at m/z 108 for olefin loss accompanied by hydrogen migration (characteristic of an

aromatic alkyl ether), and an ion of m/z 135 corresponding to $M^+ - C_3H_7$; hence component (A) is 1-methylbutyl p-tolyl ether. Components (B) and (C) were identified as 4-methyl-2-(1-methylbutyl)- and 4-methyl-3-(1-methylbutyl)-phenol, respectively. The distinction between these two isomers utilised the intensity ratio of the alkene loss peaks as described above.⁸ The structures of the products, 1-ethylpropyl p-tolyl ether, 4-methyl-2-(1-ethylpropyl)phenol, and 4-methyl-3-(1-ethylpropyl)phenol, from the solvolysis of 3-(1-ethylpropyl)amine with (1) in p-cresol (Table 5) were assigned by the same criteria as those used for 1-methylbutylamine.

We have also investigated reactions in NN-dimethylaniline. The xanthylium ion (1) with 1-methylbutylamine gave a mixture of o- and p-(1-methylbutyl)-NN-dimethylaniline, which

where shown by gas chromatography-mass spectrometry (Table 6) to be formed in the ratio 51:49. Both components (A) and (B) showed peaks at m/z 191 (M^+), 176 ($M^+ - C_3$), 148 ($M^+ - C_3H_7$), and 147 ($M^+ - C_2H_6$ N), consistent with isomeric compounds. However, fragmentation to give the m/z 162 ion was shown only by component (A) and was used to differentiate between the two isomers. Loss of C_2H_5 by displacement reaction ⁷ at nitrogen is favourable only from o-(1-methylbutyl)-NN-dimethylaniline (Scheme 2). Hence, components (A) and (B) are o- and p-(1-methylbutyl)-NN-dimethylaniline, respectively.

Similarly, the solvolysis of 1-ethylpropylamine with the xanthylium ion (1) in NN-dimethylaniline showed the presence of two components, o- and p-(1-ethylpropyl)-NN-dimethylaniline. Their structures were assigned by the same criteria as used for 1-methylbutylamine (see Table 6 and Scheme 2).

The present results are consistent with reaction of intimate ion-molecule pairs derived from (2) with the solvent as nucleophile or (less likely in view of other evidence²) with a classical $S_N 2$ reaction. That no rearrangement products were observed confirms that free carbenium ions are not involved.

Experimental

¹H and ¹³C N.m.r. spectra were measured with Varian EM 360L and JEOL FX100 spectrometers (Me₄Si as internal standard). Gas chromatographic-mass spectrometric measurements were recorded by using an AEI MS-30 mass spectrometer (using a Kratos DS-55 data system) interfaced via a jet separator to a Pye 104 gas chromatograph. The column packings employed were DEGS-PS on 70–200 mesh Supelcoport, 10% DEGS-PS on 40–200 mesh Supelcoport, 3% SP-2100 on 100–250 mesh Supelcoport, or 3% SP-2250 DB on 100–250 mesh Supelcoport (2 m × 0.25 in glass columns; helium as the carrier gas at flow rate 30 ml min⁻¹).

Solvolyses in Acetic Acid.—To a stirred suspension of the xanthylium salt (1)⁹ (2.55 g, 5 mmol) in acetic acid (9.0 g, 150 mmol) and triethylamine (5.0 g, 50 mmol) at 25 °C was added the secondary alkyl primary amine (7.5 mmol). After 120 h, the acridine (2) (85—90%) was filtered off; it crystallized from acetic acid as needles, m.p. 192—194 °C (previously reported ⁹ as plates, m.p. 166—167 °C) (Found: C, 90.0; H, 5.9; N, 3.9. $C_{27}H_{21}N$ requires C, 90.2; H, 5.9; N, 3.9%). Water (50 ml) was added and the mixture extracted with ether (3 × 25 ml). The extracts were washed with water (2 × 20 ml) and dried (MgSO₄), and then dry HCl was passed in. Filtration, evaporation *in vacuo*, and distillation and/or column chromatography (silica; 5% EtOAc-hexane) gave the products (see Tables 1—3).

Solvolyses in Methanol or Ethanol.—To a stirred suspension of the xanthylium salt (1) (2.55 g, 5 mmol) in the alcohol (25 ml) was added the secondary alkyl primary amine (0.65 g, 7.5 mmol) and triethylamine (2.5 g, 25 mmol). After 96 h at 25 °C, the acridine (2) (80—85%) was filtered off. Solvent was removed (25 °C; 15 mmHg) and the residue extracted with ether (3 \times 50 ml). The extracts were dried (MgSO₄), and HCl gas passed through until precipitation of amine hydrochlorides was complete. Filtration, evaporation *in vacuo*, distillation, and/or column chromatography (silica; 5% EtOAc-hexane) gave the products (see Tables 1—3).

Solvolyses in Phenol or p-Cresol.—The xanthylium salt (1) (2.55 g, 5 mmol) and secondary alkyl primary amine (0.65 g, 7.5 mmol) were stirred in triethylamine (5.0 g, 50 mmol) and dried phenol or p-cresol (75 mmol) for 72 h at 25 °C. The acridine (2) (90—95%) was filtered off and the mixture analysed by gas chromatography-mass spectrometry (3% SP-2100 column) (see Tables 4 and 5).

Solvolyses in NN-Dimethylaniline.—The xanthylium salt (1) (2.55 g, mmol) and secondary alkyl primary amine (0.69 g, 8 mmol) in NN-dimethylaniline (30 ml) were stirred for 72 h at 25 °C. The mixture was analysed by gas chromatography-mass spectrometry (3% SP-2250 DB column) (see Table 6).

Acknowledgements

One of us (M. L. L. R.) thanks the Commission for Educational Exchange between the United States and Spain for a Fulbright M.U.I. grant.

References

- 1 Part 15, A. R. Katritzky, M. L. Lopez-Rodriguez, and J. Marquet, J. Chem. Soc., Perkin Trans. 2, 1984, 349.
- 2 A. R. Katritzky and G. Musumarra, Chem. Soc. Rev., 1984, 13, 47.
- 3 A. R. Katritzky and A. M. El-Mowafy, J. Org. Chem., 1982, 47, 3511.
- 4 A. R. Katritzky, J. Marquet, J. M. Lloyd, and J. G. Keay, J. Chem. Soc., Perkin Trans. 2, 1983, 1435.

- 5 A. R. Katritzky, Y. X. Ou, and G. Musumarra, J. Chem. Soc., Perkin Trans. 2, 1983, 1449.
- 6 A. R. Katritzky, K. Sakizadeh, Y. X. Ou, B. Jovanovic, G. Musumarra, F. P. Ballistreri, and R. Crupi, J. Chem. Soc., Perkin Trans. 2, 1983, 1427.
- 7 F. W. McLafferty, in 'Interpretation of Mass Spectra,' 3rd edn., University Science Books, Mill Valley, California, 1980.
- 8 M. I. Gorfinkel, L. Y. Ivanovskaia, and V. A. Koptyug, Org. Mass Spectrom., 1969, 2, 273.
- 9 A. R. Katritzky and S. S. Thind, J. Chem. Soc., Perkin Trans. 1, 1981, 661; A. R. Katritzky and A. M. El-Mowafy, J. Org. Chem., 1982, 47, 3506.

Received 2nd February 1984; Paper 4/189